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Abstract

We present a kinetic numerical scheme for the relativistic Euler equations, which describe the flow of a perfect fluid

in terms of the particle density n, the spatial part of the four-velocity u and the pressure p. The kinetic approach is very
simple in the ultra-relativistic limit, but may also be applied to more general cases. The basic ingredients of the kinetic

scheme are the phase-density in equilibrium and the free flight. The phase-density generalizes the non-relativistic

Maxwellian for a gas in local equilibrium. The free flight is given by solutions of a collision free kinetic transport

equation. The scheme presented here is an explicit method and unconditionally stable. We establish that the conser-

vation laws of mass, momentum and energy as well as the entropy inequality are everywhere exactly satisfied by the

solution of the kinetic scheme. For that reason we obtain weak admissible Euler solutions including arbitrarily com-

plicated shock interactions. In the numerical case studies the results obtained from the kinetic scheme are compared

with the first order upwind and centered schemes.
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1. Introduction

Relativity plays an important role in areas of astrophysics, high energy particle beams, high energy

nuclear collisions, and free-electron laser technology. The equations that describe the relativistic gas dy-

namics are highly non-linear. For the practical problems it is difficult to solve these equations analytically,

therefore numerical solutions are persued. A good introduction about the recent methods applied to rel-

ativistic gas dynamics can be found in the review article of Mart�ıı and M€uuller [23]. It is noted that, except the

Journal of Computational Physics 187 (2003) 572–596

www.elsevier.com/locate/jcp

qThis work is supported by the project ‘‘Long-time behaviour of non-linear hyperbolic systems of conservation laws and their

numerical approximation’’, contract # DFG WA 633/7-2.
*Corresponding author. Tel.: +391-67-12877; fax: +391-67-18073.

E-mail addresses:Matthias.Kunik@Mathematik.Uni-Magdeburg.DE (M. Kunik), Shamsul.Qamar@Mathematik.Uni-Magdeburg.

DE (S. Qamar), Gerald.Warnecke@Mathematik.Uni-Magdeburg.DE (G. Warnecke).

0021-9991/03/$ - see front matter � 2003 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0021-9991(03)00125-6



kinetic beam scheme of Yang et al. [31], all other methods developed for the relativistic Euler equations are

based on macroscopic continuum description.

Kinetic approaches in order to solve the classical Euler equations of gas dynamics were successfully

applied to several initial- and boundary-value problems, see for example Reitz [25], Deshpande and Raul

[7], Deshpande [8–10], Xu [28–30], Dreyer and Kunik [11], Junk [21]. Some interesting links between the

Euler system and the so called kinetic BGK-model, which was introduced by Bhatnagar et al. [1], are

discussed in the textbooks by Cercignani [2] as well as by Godlewski and Raviart [17].

In the kinetic theory of gases there is a fundamental quantity f ¼ f ðt; x; qÞ called phase density, which is
usually a function of time t, position x and of the momentum q related to the single gas atoms. It usually

results from a kinetic equation like the Boltzmann- or BGK-equation, see [2] and [1]. Then the macroscopic

thermodynamic quantities like particle density, energy density, velocity, and pressure are tensor-algebraic

combinations of some basic integral moments of the phase density f , where the integration is performed
with respect to the momentum q of the gas atoms. Therefore the macroscopic quantities depend only on

time and space. They are all completely determined by the phase density f .
J€uuttner [20] extended the classical Maxwellian for the Boltzmann gas in equilibrium to the relativistic

theory. Later this phase density and the whole relativistic kinetic theory was written in a manifest Lorentz-
invariant form, see the articles of Chernikov [3,4], Israel [19], and the textbook deGroot et al. [18]. The

equilibrium phase-density for the Fermi- and Bose-gas and the corresponding equations of state were also

given by J€uuttner [22].
The hyperbolic systems that can be treated by the kinetic method are those which may be generated from

kinetic transfer equations and from the Maximum Entropy Principle. Since these systems lead to a convex

entropy function, they enable several rigorous mathematical results, see for example Friedrichs and Lax [16]

as well as Dafermos [6]. In the case of thermodynamical equilibrium the Maximum Entropy Principle

constitutes a successful method in order to obtain the Maxwellian phase density for the Boltzmann gas as
well as the corresponding phase densities for the Fermi- and Bose-gas in equilibrium from the corre-

sponding kinetic entropy definitions.

A kinetic scheme consists of the following ingredients:

(i) The first ingredient is the kinetic solution of a collisionless transport equation for the phase density.

This is the solution in the so called free-flight period of duration sM > 0, where sM is the time-step of the
numerical scheme.

(ii) At the maximization times tn ¼ nsM (n ¼ 0; 1; 2; . . .), the beginning of each of these free-flight periods,
the gas particles are in local equilibrium, which is described by J€uuttners relativistic generalization of the
classical Maxwellian phase density.

(iii) At each newmaximization time tn > 0 we evaluate the so called continuity conditions, which guarantee
that the kinetic scheme satisfies the conservation laws and the entropy inequality. These continuity conditions

determine the new initial data at tn. The fluid dynamic variables like mass, momentum and energy density are
obtained from moments of the free-flight phase density. These variables serve as initial data for the next

period of free-flight. The macroscopic quantities will solve the relativistic Euler equations in the limit sM ! 0.

The main philosophy of the kinetic schemes results from the fact that the underlying kinetic theory

models most of the important physical properties inherently. For example, the kinetic solutions preserve the
positivity of the particle density and pressure. Further, they satisfy the entropy inequality as well as the L1-
stablity, see [8,11]. The kinetic schemes presented here are explicit methods and unconditionally stable.

Because of its explicit nature the method is highly vectorizable and satisfies the total variation diminishing

(TVD) property, see [8]. The extension of the scheme to higher dimensions is straight forward, and we will

indeed start with presenting the scheme in three space dimensions. One does not need a dimensional

splitting type approach in more than one space dimension. Despite these advantages we have also to

mention two short comings of these kinetic schemes, namely they are numerically expensive and secondly

the numerical dissipation is of the order of the time step sM, see [8]. The later is due to the fact that the
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schemes are only of first order. A higher order extension is possible in a similar manner as in [8] and will be

considered in future work.

It is important to note that the basic ideas of this study can also be applied to other hyperbolic systems

and kinetic equations and can be extended to initial and boundary value problems. For example, one

application area is the evolution of temperature and heat flux in a Bose gas of phonons, see Dreyer and

Kunik [12]. There are also extensions of the kinetic approach to handle multicomponent flows and mag-

netohydrodynamics equations, see Xu [27,29].

In this paper we will formulate a kinetic scheme in order to solve the initial value problem for the ultra-
relativistic Euler equations. The kinetic scheme presented here is discrete in time but continuous in space.

Euler�s equations (relativistic or classic) deal with a perfect gas, in which mean free paths and collision free
times are so short that perfect isotropy is maintained about any point moving with the gas. In this case the

local equilibrium assumption is satisfied and the corresponding phase-densities are obtained from the

Maximum Entropy Principle in equilibrium. In the textbook of Weinberg [26] one can find a short in-

troduction to special relativity and relativistic hydrodynamics with further literature also for the imperfect

fluid (gas), see for example the papers of Eckart [13–15]. The ultra-relativistic case is the limit either of high

temperature for non-zero rest mass or for a fixed temperature at very small rest mass of the gas atoms. We
find the latter point of view more natural for our purposes since this corresponds to writing the Euler

equations in a rescaled dimensionless form.

Now we give a short overview of this paper:

In Section 2 we will present the basic definitions of the relativistic kinetic theory, namely the macroscopic

quantities considered in thermodynamics which are obtained from a kinetic phase density. Moreover

the relativistic Maxwellian studied by J€uuttner [20] is introduced and two limiting cases are considered, the
classical Maxwellian for a cool, non-relativistic gas and the ultra-relativistic J€uuttner phase density. The
former case is not pursued further here. It will be considered in a forthcoming paper.
In Section 3 we calculate the macroscopic moments of the relativistic Maxwellian in order to formulate

the ultra-relativistic Euler equations as conservation laws for the particle number, momentum, and energy.

The Euler equations are written in differential form as well as in a weak integral form. An entropy in-

equality is given in weak integral form with an entropy function which satisfies the Gibbs equation. The

Rankine–Hugoniot conditions and the entropy inequality are used in order to derive a simple parameter

representation for the admissible shocks.

In Section 4 we first formulate the kinetic scheme in order to solve the three-dimensional ultra-relativistic

Euler equations. In contrast to the classical three-dimensional Euler equations for a non-relativistic gas we
will show that the threefold momentum integrals for the particle-density four-vector and for the energy-

momentum tensor reduce simply to surface integrals where the integration is performed with respect to the

unit sphere. A similar idea was used by Dreyer and Kunik [12] in order to solve the hyperbolic moment

systems for a phonon Bose-gas, resulting from the Boltzmann–Peierls equation and maximum entropy

principle. Then we prove that the conservation laws and the entropy inequality are satisfied for this scheme.

For this purpose the continuity conditions for the zero components of the moments play a crucial role,

more precisely they constitute necessary conditions in order to guarantee that the conservation laws and the

entropy inequality are also satisfied across the maximization times. The continuity conditions are also
required in order to initialize the kinetic scheme for the next time step.

In Section 5 we are looking at the special case of spatially one-dimensional solutions which are never-

theless solutions to the three dimensional ultra-relativistic Euler equations. In this case the surface integrals

of the three-dimensional kinetic scheme reduce again to single integrals which range from �1 to þ1. They
indicate the finite domain of dependence on the preceeding initial data, which is covered by the backward

light-cones. This property does not hold for classical kinetic schemes.

In Section 6 we discuss the Eulerian limit sM ! 0 of the kinetic scheme where weak solutions are ob-

tained from the initial value problems including arbitrary complicated shock interactions.
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In Section 7 we compute a numerical a test case with an explicitly known single shock solution from

Section 3. Moreover we compute a Riemann solution which shows a shock, a contact discontinuity and a

rarefaction wave.

2. The relativistic kinetic phase density and its moments

In this section we describe a relativistic gas consisting of many microscopic structureless particles in
terms of the relativistic kinetic phase density. From this fundamental phase density we calculate tensorial

moments which give the local macroscopic physical quantities of the gas such as the particle density, the

velocity, the pressure, the temperature and so on.

In order to formulate the theory in a Lorentz-invariant form, we make use of the notations for the tensor

calculus used in the textbook of Weinberg [26], with only slight modifications:

(A) The space–time coordinates are xl, l ¼ 0; 1; 2; 3; with x0 :¼ ct for the time, x1; x2; x3 for the
position.

(B) The metric-tensor is

glm ¼ glm ¼
þ1; l ¼ m ¼ 0;
�1; l ¼ m ¼ 1; 2; 3;
0; l 6¼ m:

8<
: ð2:1Þ

(C) The proper Lorentz-transformations are linear transformations Ka
b from one system of space–time

with coordinates xa to another system x0a. They must satisfy

x0a ¼ Ka
bx

b; glm ¼ Ka
lK

b
mgab; K00P 1; detK ¼ þ1:

The conditions K00 P 1 and detK ¼ þ1 are necessary in order to exclude inversion in time and space.
Then the following quantity forms a tensor with respect to proper Lorentz-transformations, the so called

Levi–Civita tensor:

�abcd ¼
þ1; abcd even permutation of 0123;
�1; abcd odd permuation of 0123;
0; otherwise:

8<
: ð2:2Þ

Note that in the textbook of Weinberg [26] this tensor as well as the metric tensor both take the sign
opposite to the notation used here.

(D) Einstein’s summation convention: Any Greek index like a; b; that appears twice, once as a subscript
and once as a superscript, is understood to be summed over 0, 1, 2, 3 if not noted otherwise. For spatial

indices, which are denoted by Latin indices like i; j; k; we will not apply this summation convention.
First we take a microscopic look at the gas and start with the kinematics of a representative gas atom with

particle trajectory x ¼ xðtÞ, where the time coordinate t and the space coordinate x are related to an ar-
bitrary Lorentz-frame. The invariant mass of all structureless particles is assumed to be the same and is

denoted by m0. The microscopic velocity of the gas atom is dxðtÞ=dt, and its microscopic velocity four-
vector is given by cql, where the dimensionless microscopic velocity four-vector ql is defined by

q0; q
� �T

; q0 ¼ q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
; q ¼

1
c ðdx=dtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
c ðdx=dtÞ
� �2q : ð2:3Þ

The relativistic phase density f ðt; x; qÞP 0 is the basic quantity of the kinetic theory. A physical interpre-
tation of the phase density will be discussed when we derive the basic quantities like particle density,
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velocity four-vector and pressure from its moments defined below. We make use of the fact that the so

called proper volume element d3q=q0 is invariant with respect to Lorentz-transformations in order to define
the macroscopic moments and entropy four-vector:

(i) particle-density four-vector

Nl ¼ N lðt; xÞ ¼
Z
R3
qlf ðt; x; qÞ d

3q
q0

: ð2:4Þ

(ii) energy–momentum tensor

T lm ¼ T lmðt; xÞ ¼ m0c2
Z
R3
qlqmf ðt; x; qÞ d

3q
q0

; ð2:5Þ

(iii) entropy four-vector

Sl ¼ Slðt; xÞ ¼ �kB
Z
R3
qlf ðt; x; qÞ ln f ðt; x; qÞ

v


 �
d3q
q0

: ð2:6Þ

Here, kB ¼ 1:38062	 10�23 J=K is Boltzmann�s constant and v ¼ ðm0c=�hÞ3 with Planck�s constant
�h ¼ 1:05459 	 10�34 J s. Note that v has the same dimension as f , namely 1/volume. We also state here that
the entropy formula (2.6) can be generalized easily in such a way, that the well known case of a Fermi- or
Bose-gas is also included in this kinetic framework. Then formula (2.6) reads in the general case

Sl ¼ �kB
Z
R3
ql f ln

f
v

�
� gv 1



þ g

f
v

�
ln 1



þ g

f
v

�
d3q
q0

: ð2:7Þ

Here, g ¼ 0 reduces to (2.6), which is valid for the relativistic generalization of Boltzmann�s statistic,
whereas g ¼ þ1 is required for the Bose–Einstein statistic and g ¼ �1 for the Fermi statistic.
Note that the spatial part q 2 R3 of the dimensionless microscopic velocity four-vector is used as an

integration variable in the relativistic kinetic theory. Now we may use the macroscopic moments N l, T lm

and Sl of the relativistic phase density f in order to calculate the other macroscopic quantities of the gas,
which are tensor algebraic combinations of these moments:

(i) the proper particle density

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
N lNl

p
; ð2:8Þ

(ii) the dimensionless velocity four-vector

ul ¼ 1
n
N l; ð2:9Þ

(iii) the proper energy density

e ¼ ulumT lm; ð2:10Þ

(iv) the proper pressure and temperature

p ¼ 1
3
ðulum � glmÞT lm ¼ kBnT ; ð2:11Þ

(v) the proper entropy density

r ¼ Slul: ð2:12Þ
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Remarks:

(i) Since f P 0, it can be shown that Nl is a time-like vector, NlNl > 0, if f does not vanish almost
everywhere for any fixed t, x, which will be assumed in the following. It follows that the particle density
n is well defined and positive. In order to see that the energy density is always positive we write it in the
form

e ¼ m0c2
Z
R3
ðulqlÞ2f ðt; x; qÞ d

3q
q0

: ð2:13Þ

(ii) The macroscopic velocity v of the gas can be obtained easily from the spatial part u ¼ ðu1; u2; u3ÞT of
the dimensionless velocity four vector by

v ¼ c
uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p : ð2:14Þ

From this formula we can immediately read off that jvj < c, i.e., the absolute value of the velocity is
bounded by the speed of light. Note also that u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
.

The attribute �proper� denotes a Lorentz-invariant quantity, which takes its simplest form with respect to a
Lorentz-frame where the gas is locally at rest. Since all quantities under consideration are written down in

Lorentz-invariant form, we may omit the word �proper� in the following.
These definitions are valid for any relativistic phase-density f ¼ f ðt; x; qÞ, which has to be determined

from a kinetic equation of the following form

ql of
oxl

¼ Qðf Þ: ð2:15Þ

As in the non-relativistic kinetic theory we have a corresponding transport part on the left-hand side and a

collision part Qðf Þ on the right-hand side. In the simplest case Qðf Þ is determined in such a way that the
following five conservation laws hold for the particle number, the energy, and the momentum

oNl

oxl
¼ 0; oT lm

oxm
¼ 0: ð2:16Þ

This simple case holds if the particles interact only during elastic collisions without other forces and ra-

diation. It will nevertheless lead to an interesting and self-consistent relativistic thermodynamics, even if it is

physically not realizable.

J€uuttner extended the classical velocity distribution of Maxwell for a gas in equilibrium to the relativistic
case. The resulting J€uuttner distribution fJðn; T ; u; qÞ depends on five constant parameters, which describe the
state of the gas in equilibrium, namely the particle density n, the absolute temperature T and the spatial part
u 2 R3 of the dimensionless four-velocity. It is given by

fJðn; T ; u; qÞ ¼
n

MðbÞ exp
�
� bulql

�
¼ n
MðbÞ exp

�
� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u2Þð1þ q2Þ

p�
� u  q

��
; ð2:17Þ

where

b ¼ m0c2

kBT
; MðbÞ ¼ 4p

Z 1

0

#2 expð�b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ #2

p
Þd#: ð2:18Þ

The function MðbÞ is chosen in such a way that

nul ¼
Z
R3
qlfJðn; T ; u; qÞ

d3q
q0

ð2:19Þ
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holds for the spatial part u ¼ ðu1; u2; u3ÞT of the dimensionless macroscopic velocity four-vector. This is
Eq. (2.9), where u and n are in addition parameters of J€uuttner�s relativistic phase density. Using the Bessel
functions

KnðbÞ ¼
Z 1

0

coshðnsÞ expð�b coshðsÞÞds ð2:20Þ

and applying the substitution # ¼ sinhðsÞ we may also write MðbÞ in the form

MðbÞ ¼ 4p
b
K2ðbÞ: ð2:21Þ

Now we shall discuss two important special cases for this phase density, namely the non-relativistic limit for

a cool gas and the ultra-relativistic limit m0 ! 0.

The non-relativistic limit (small temperatures, small velocities):

For the first case we rewrite (2.17) in the form

fJðn; T ; u; qÞ ¼
n

M1ðbÞ
exp

 
� b

ðq� uÞ2 þ u2q2 � ðu  qÞ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u2Þð1þ q2Þ

p
þ u  q

!
; ð2:22Þ

where

M1ðbÞ ¼ MðbÞ expðbÞ: ð2:23Þ

If we apply for # > 0 the integral substitution

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ #2

p
� 1Þ

q
; ð2:24Þ

then we can rewrite M1ðbÞ in the form

M1ðbÞ ¼
2p
b


 �3=2
 2
Z 1

0

1



þ n2

2b

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2

4b

s
 expð�n2=2Þffiffiffiffiffiffi

2p
p dn: ð2:25Þ

For b ! 1, i.e., for small temperature, we can conclude from (2.25) that

M1ðbÞ ¼
2p
b


 �3=2
þOðb�5=2Þ ¼ 2pkBT

m0c2


 �3=2
þOðT 5=2Þ;

and the representation (2.22) shows that the J€uuttner phase density reduces to the non-relativistic Max-
wellian for juj, jqj very small, namely

fcðn; T ; u; qÞ ¼ n
m0c2

2pkBT


 �3=2
exp

"
� m0c2ðq� uÞ2

2kBT

#
: ð2:26Þ

The ultra-relativistic limit (zero rest mass of the particles):

For the ultra-relativistic limit m0 ! 0 with fixed temperature we apply the substitution q0 ¼ m0  q in
order to write (2.17) in the form

fJðn; T ; u; qÞ ¼ m30
n

M2ð~bbÞ
exp



� ~bb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u2Þðm20 þ q02Þ

q

� u  q0

��
; ð2:27Þ
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where

~bb ¼ b
m0

¼ c2

kBT
; M2ð~bbÞ ¼

8p
~bb3

Z 1

0

n2

2
exp



�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m20 ~bb

2 þ n2
q �

dn: ð2:28Þ

In the following we do not use primes for the new integration variable q.

Now we are able to pass to the ultra-relativistic limit m0 ! 0. In order to do this we first have to replace

the four-vector ql defined in (2.3) by the light vector

q0; q
� �T

; q0 ¼ q0 ¼ jqj: ð2:29Þ

Next we will introduce dimensionless quantities by setting c ¼ kB ¼ �h ¼ 1. Then the ultra-relativistic mo-
ments and entropy four-vector take a similar form as given in (2.4), (2.5) and (2.6)

Nl ¼ N lðt; xÞ ¼
Z
R3
qlf ðt; x; qÞ d

3q
jqj ; ð2:30Þ

T lm ¼ T lmðt; xÞ ¼
Z
R3
qlqmf ðt; x; qÞ d

3q
jqj ; ð2:31Þ

and the macroscopic entropy four-vector

Sl ¼ Slðt; xÞ ¼ �
Z
R3
qlf ðt; x; qÞ ln f ðt; x; qÞ

v


 �
d3q
jqj ; ð2:32Þ

where v ¼ ðm0c=�hÞ3.
Here, f is first taken as the ultra-relativistic J€uuttner phase density (2.27) in its dimensionless form as

f �
J ðn; T ; u; qÞ ¼

n
8pT 3

exp



� ulql

T

�
¼ n
8pT 3

exp



� jqj
T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p

� u  q

jqj

��
: ð2:33Þ

But we will also use Eqs. (2.30), (2.31) and (2.32) in order to define new moments for a general phase

density f . In this case we will again call (2.30), (2.31) and (2.32) the moments for the ultra-relativistic limit.
For that reason we have used the general symbol f for the new moments instead of f �

J . These more general
definitions will be important for the formulation of kinetic schemes in order to solve the fluid dynamic

equations in the ultra-relativistic limit.

Finally it is important to note that all the definitions given for the particle density n, velocity four-vector
ul, energy density e and for the pressure p, which are tensor invariant algebraic combinations of the basic
moments Nl and T lm, are still valid for an arbitrary phase density f in the ultra-relativistic limit. Never-
theless we can still simplify the generally valid formula (2.11) for the pressure in the ultra-relativistic

limit

p ¼ 1
3
ulumT lm � 1

3
glmT lm ¼ 1

3
ulumT lm �

Z
R3
glmqlqmf

d3q
q0

: ð2:34Þ

Since glmqlqm ¼ qmqm ¼ 0 holds due to (2.29), we immediately conclude that

p ¼ e
3
¼ 1
3
T lmulum ¼ nT ð2:35Þ

in the ultra-relativistic case.
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3. The ultra-relativistic Euler equations

Using the ultra-relativistic J€uuttner distribution (2.33) we obtain for the moments (2.30), (2.31) and (2.32)

Nl ¼ nul; T lm ¼ �pglm þ 4pulum; ð3:1Þ

Sl ¼ �Nl ln
n4

p3
þ cNl; r ¼ �n ln n

4

p3
þ cn; ð3:2Þ

where c may be any real dimensionless constant. Note that due to the mass conservation (2.16) the di-
vergence of Sl, which will give rise to the H-theorem formulated later, will not change when we add some

multiple of N l to Sl. Moreover r obeys the Gibbs equation

Td
r
n

� �
¼ pd

1

n


 �
þ d

e
n

� �
: ð3:3Þ

These formulas can be easily checked for a special Lorentz frame where u0 ¼ 1, u1 ¼ u2 ¼ u3 ¼ 0, i.e., where
the gas is locally at rest. Since the ultra-relativistic moments (3.1) are valid in a special Lorentz frame and

since these equations are written in tensor invariant form, they are generally valid in every Lorentz frame.

Using the moments (3.1) and the conservation laws (2.16), we get at regular points the three dimensional

Euler equation in differential form

o

ot
ðn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ þ r  ðnuÞ ¼ 0; ð3:4Þ

o

ot
ð4pui

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ þ

X3
k¼1

o

oxk
ðpdik þ 4puiukÞ ¼ 0; ð3:5Þ

o

ot
ð3p þ 4pu2Þ þ

X3
k¼1

o

oxk
ð4puk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þ ¼ 0: ð3:6Þ

At regular points the function is continuously differentiable with respect to time and space. Note that the

Eqs. (3.5) and (3.6) are a closed 4 by 4 system for p and u. The relativistic continuity Eq. (3.4) decouples

from the system. For given u it is a scalar equation for n.
Now we are looking for special solutions of the three dimensional ultra-relativistic Euler equations,

which will not depend on x2, x3 but only on x ¼ x1. Moreover we restrict to a one-dimensional flow field
u ¼ ðuðt; xÞ; 0; 0ÞT

ðn
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þt þ ðnuÞx ¼ 0;

ð4pu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þt þ ðpð1þ 4u2ÞÞx ¼ 0; ð3:7Þ

ðpð3þ 4u2ÞÞt þ ð4pu
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
Þx ¼ 0:

Note that these differential equations constitute a strictly hyperbolic system with the characteristic velocities

k1 ¼
2u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�

ffiffiffi
3

p

3þ 2u2 ; k2 ¼
uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; k3 ¼
2u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
þ

ffiffiffi
3

p

3þ 2u2 : ð3:8Þ

These eigenvalues may first be obtained in the Lorentz rest frame where u ¼ 0. Then using the relativistic
additivity law for the velocities, we can easily obtain (3.8) in the general Lorentz frame. In the Lorentz rest

frame we obtain the positive speed of sound k ¼ 1=
ffiffiffi
3

p
, which is independent of the spatial direction.
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The differential equations (3.7) are not sufficient if we take shock discontinuities into account. Therefore

we choose a weak integral formulation which is given due to Oleinik [24] by curve integrals in time and

space, namelyI
oX
n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
dx� nudt ¼ 0;I

oX
4pu

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
dx� pð1þ 4u2Þdt ¼ 0; ð3:9ÞI

oX
pð3þ 4u2Þdx� 4pu

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
dt ¼ 0:

Here, X � Rþ
0 	 R is a normal region in space–time and with a piecewise smooth, positively oriented

boundary. Note that this weak formulation takes discontinuities into account, since there are no derivatives

of the fields involved. The use of Oleinik�s formulation enables a direct proof of conservation laws and
entropy inequality which are given in Section 4. If we apply the Gaussian divergence theorem to the weak

formulation (3.9) in time–space regions where the solution is regular we come back to the differential

equation form of the Euler equations (3.7).

Furthermore we require that the weak solution (3.9) must also satisfy the entropy-inequalityI
oX
S0dx� S1dtP 0; ð3:10Þ

where

S0 ¼ �n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
ln
n4

p3
; S1 ¼ �nu ln n

4

p3
: ð3:11Þ

Now we consider bounded and integrable initial data for a positive particle density n, transformed velocity u
and absolute temperature T , which may have jumps

nð0; xÞ ¼ n0ðxÞ > 0; uð0; xÞ ¼ u0ðxÞ; T ð0; xÞ ¼ T0ðxÞ > 0: ð3:12Þ

If x ¼ xðtÞ is a shock-discontinuity of the weak solution (3.9) with speed vs ¼ _xxðtÞ, W� ¼ ðn�; u�; p�Þ the
state left to the shock and Wþ ¼ ðnþ; uþ; pþÞ the state to the right, then (3.9) leads to the Rankine–Hugoniot

jump conditions

vs½nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2þ

q
� n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2�

q
� ¼ nþuþ � n�u�;

vs½4pþuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2þ

q
� 4p�u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2�

q
� ¼ ðpþ þ 4pþu2þÞ � ðp� þ 4p�u2�Þ; ð3:13Þ

vs½ð3pþ þ 4pþu2þÞ � ð3p� þ 4p�u2�Þ� ¼ 4pþuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2þ

q
� 4p�u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2�

q
:

Also at the points of Rankine–Hugoniot shock curves the local form of (3.10) reads

�vsðS0þ � S0�Þ þ ðS1þ � S1�ÞP 0; ð3:14Þ

which must be satisfied on each shock curve of (3.9). A shock that satisfies (3.13) and (3.14) is called an
entropy shock.

Now we give parameter representations for single entropy shocks. For this purpose we choose the initial

data as follows:

Let be ðn�; u�; T�Þ 2 Rþ 	 R	 Rþ and define p� ¼ n�T�.
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We use the pressure p as a parameter which determines the strength of an entropy shock. Eqs. (3.13) and
(3.14) are solved by

nðpÞ ¼ n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
p�

3p þ p�
p þ 3p�


 �s
; ð3:15Þ

uðpÞ ¼ u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� þ 3p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p þ 3p�

p
�

ffiffiffi
3

p
ðp � p�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2�

p
4
ffiffiffiffiffiffiffi
pp�

p ; ð3:16Þ

T ðpÞ ¼ p
nðpÞ ; ð3:17Þ

usðpÞ ¼
u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp þ 3p�Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p� þ 3p

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2�

p
ffiffiffiffiffiffiffi
8p�

p ; ð3:18Þ

vs ¼
usffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2s

p ; v ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; v� ¼
u�ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2�

p ð3:19Þ

in the following way:

• The ‘‘+’’ sign in (3.16), (3.18) and p > p� gives the so called 3-shocks with the constant state ðn�; u�; T�Þ on
the right

ðn�; u�; T�Þ ¼ ðnðpÞ; uðpÞ; T ðpÞÞ; ðnþ; uþ; TþÞ ¼ ðn�; u�; T�Þ:

These 3-shocks satisfy both the Rankine–Hugoniot conditions (3.13) as well as the entropy condition

(3.14).

• The ‘‘)’’ sign in (3.16), (3.18) and p > p0 gives the so called 1-shocks with the constant state ðn�; u�; T�Þ on
the left:

ðn�; u�; T�Þ ¼ ðn�; u�; T�Þ; ðnþ; uþ; TþÞ ¼ ðnðpÞ; uðpÞ; T ðpÞÞ:

These 1-shocks satisfy both the Rankine–Hugoniot conditions (3.13) as well as the entropy condition

(3.14).
Now we define the 2-shocks, that turn out to be contact-discontinuities without entropy-production:

Only for these we choose n > 0 instead of p as a parameter and set

ðn�; u�; T�Þ ¼ ðn�; u�; T�Þ; ðnþ; uþ; TþÞ ¼ n; u�;
n�T�
n


 �
:

These shocks satisfy the Rankine–Hugoniot- and entropy conditions.

Note that velocity and pressure are constant across a 2-shock. Here, the shock-speed is

vs ¼ v� ¼ u�=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2�

p
Þ.

Remark. From the Rankine–Hugoniot jump conditions one can derive by simple algebraic calculations that

the only shocks are 1-, 2- and 3-shocks analogously as in the non-relativistic case, see Courant and

Friedrichs [5].
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4. The kinetic scheme for the Euler equations

We first formulate the scheme for the three dimensional Euler equations. After that we solve the one

dimensional Euler equations, using a special integration technique. Recalling the ultra-relativistic J€uuttner
phase density (2.33), we start with the given initial data nIðxÞ ¼ nð0; xÞ, TIðxÞ ¼ T ð0; xÞ, uIðxÞ ¼ uð0; xÞ.
We prescribe a time step sM > 0 and let tn ¼ nsM for n ¼ 0; 1; 2; 3 . . . be the maximization times. Then we

define the moments and the entropy four-vector in the free flight for 0 < s < sM as

Nlðtn þ s; xÞ ¼
Z
R3
qlfn x



� s

q

jqj ; q
�
d3q
jqj ;

T lmðtn þ s; xÞ ¼
Z
R3
qlqmfn x



� s

q

jqj ; q
�
d3q
jqj ; ð4:1Þ

Slðtn þ s; xÞ ¼ �
Z
R3
qlðfn ln fnÞ x



� s

q

jqj ; q
�
d3q
jqj ; ð4:2Þ

with the ultra-relativistic initial phase density at the maximization time tn given as

fnðy; qÞ ¼ f �
J ðnðtn; yÞ; T ðtn; yÞ; uðtn; yÞ; qÞ: ð4:3Þ

Moreover n; T ; ul are calculated from Nl and T lm for the next time step from the following generally valid
definitions

n ¼
ffiffiffiffiffiffiffiffiffiffiffi
N lNl

p
; ul ¼ 1

n
N l; T ¼ 1

3n
ulumT lm: ð4:4Þ

In order to initialize the kinetic scheme for the next time step, we first require the following continuity

conditions for the zero-components of the moments across the maximization time tn, nP 1

N 0ðtþn ; xÞ ¼ N 0ðt�n ; xÞ;
T 0kðtþn ; xÞ ¼ T 0kðt�n ; xÞ; k ¼ 1; 2; 3; ð4:5Þ
T 00ðtþn ; xÞ ¼ T 00ðt�n ; xÞ:

Here, we have used the following abbreviations for the one-sided limits across the maximization time tn,
nP 1, where e is a positive real number

Nlðt�n ; xÞ ¼ lime!0 N
lðtn � e; xÞ;

T lmðt�n ; xÞ ¼ lime!0 T
lmðtn � e; xÞ:

Later on we will see in Proposition 4.2 that these conditions are necessary in order to guarantee the

conservation laws for mass, momentum and energy across the maximization time tn. Moreover we start
again with a ultra-relativistic J€uuttner distribution for the next time step. Then we obtain, using the con-
stitutive relations (3.1), for the three dimensional Euler equations which are valid for the tþn side of the
maximization time

N 0ðtþn ; xÞ ¼ nðtþn ; xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðtþn ; xÞ

q
;

T 0kðtþn ; xÞ ¼ 4pðtþn ; xÞukðtþn ; xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðtþn ; xÞ

q
; ð4:6Þ

T 00ðtþn ; xÞ ¼ pðtþn ; xÞ 3
�

þ 4u2ðtþn ; xÞ
�
:
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Here, k ¼ 1; 2; 3 again denote spatial indices. Since these components of the moments are continuous across
the maximization time tn, we can replace them by the free-flight moments for t�n and solve the Eq. (4.6) for
p; u; n in order to initialize the kinetic scheme for the next time step by the following relations

pðtþn ;xÞ ¼
1

3

2
4� T 00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðT 00Þ2 � 3

X3
k¼1

ðT 0kÞ2
vuut

3
5; ð4:7Þ

ukðtþn ; xÞ ¼
T 0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pðtþn ; xÞ½pðtþn ; xÞ þ T 00�
p ; ð4:8Þ

nðtþn ; xÞ ¼
N 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
P3

k¼1½ukðtþn ; xÞ�
2

q : ð4:9Þ

In these formulas N 0, T 00 and T 0k are abbreviations for the free flight moments N 0ðt�n ; xÞ, T 00ðt�n ; xÞ and
T 0kðt�n ; xÞ, respectively.
Note that the quantities on the left-hand side have to be calculated in the prescribed order from the free

flight moments N 0, T 00 and T 0k. Since they initialize the scheme for the next time step they conclude the
formulation of the kinetic scheme.

But, we can still apply an important simplification of the volume integrals (4.1) and (4.2) for the free

flight moments. We can see in (4.3) that the fields nðt; yÞ; T ðt; yÞ and uðt; yÞ are not depending on jqj but
only on the unit vector w ¼ ðw1;w2;w3ÞT ¼ q=jqj. This fact enables us to reduce the threefold volume in-
tegrals to the twofold surface integrals by applying polar coordinates. Using the abbreviations

Uðy;wÞ ¼ 1

4p
nðyÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� w  uðyÞÞ3

;

Wðy;wÞ ¼ 3

4p
ðnT ÞðyÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� w  uðyÞÞ4

;

ð4:10Þ

we can now carry out the integration with respect to jqj explicitly and obtain the following reduced surface
integrals for the moments

N 0ðtn þ s; xÞ ¼
I
oBð1;0Þ

Uðx� sw;wÞdSðwÞ; ð4:11Þ

Nkðtn þ s; xÞ ¼
I
oBð1;0Þ

wkUðx� sw;wÞdSðwÞ;

T 00ðtn þ s; xÞ ¼
I

oBð1;0Þ

Wðx� sw;wÞdSðwÞ;

T 0kðtn þ s; xÞ ¼
I

oBð1;0Þ

wkWðx� sw;wÞdSðwÞ; ð4:12Þ

T kmðtn þ s; xÞ ¼
I

oBð1;0Þ

wkwmWðx� sw;wÞdSðwÞ:

Here, w ¼ q=jqj is the unit vector in direction of q and Bðr; x0Þ is the ball with radius r and center x0. Its
boundary is the sphere oBðr; x0Þ. These surface integrals reflect the fact that in the ultra-relativistic case the
particles are moving on the surface of the light cone.
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Using the Cauchy–Schwarz inequality one can prove that n, p, e resulting from the moment integrals
(4.11) and (4.12) are well defined and positive quantities for all times and positions.

Proposition 4.1. Let 0 < s < sM and n ¼ 0; 1; 2; . . . We consider the moments in the free flight between the

two maximization times tn and tnþ1. Within this free flight zone the moments Nlðtn þ s; xÞ, T lmðtn þ s; xÞ and
the entropy four-vector Slðtn þ s; xÞ satisfy the following conservation laws in weak integral formI

oX
N mðtn þ s; xÞdom ¼ 0;

I
oX
T lmðtn þ s;xÞdom ¼ 0;

I
oX
Smðtn þ s; xÞdom ¼ 0:

Here, the covariant vector dom is a positively oriented surface element to the boundary oX. It can be written in

covariant form as

doj ¼ ejklm

X3
i;j;m¼1

oxk

oui
oxl

ouj
oxm

oum
duidujdum;

where xa ¼ xaðu1; u2; u3Þ is a positively oriented parameterization of the boundary oX.

Remark. Note that these weak formulations correspond to the differential equations

oN m

oxm
ðtn þ s; xÞ ¼ 0; oT lm

oxm
ðtn þ s; xÞ ¼ 0; oSm

oxm
ðtn þ s; xÞ ¼ 0: ð4:13Þ

Proof. For 0 < s < sM let be t ¼ tn þ s. If we start with the relativistic Maxwellian (4.3) as the initial
phase density at the time tn then we obtain within the time-region 0 < tn < t < tn þ sM the free flight

density

f ðt; x; qÞ ¼ f x



� s

q

jqj ; q
�
;

which satisfies the following weak form of the free flight equationI
oX
qmf ðt; x; qÞdom ¼ qm

I
oX
f ðt; x; qÞdom ¼ 0: ð4:14Þ

The Eq. (4.14) and its multiplication with ql leads after integration with respect to q to the following

equationsZ
R3

I
oX
qmf ðt; x; qÞdom


 �
d3q
jqj ¼ 0;Z

R3

I
oX
qlqmf ðt; x; qÞdom


 �
d3q
jqj ¼ 0:

ð4:15Þ

Since the volume integral with respect to q and the surface integral with respect to t and x are inter-
changeable, we can rewrite Eq. (4.1) in order to get the conservation laws

I
oX

Z
R3
qmf ðt; x; qÞ d

3q
jqj


 �
dom ¼

I
oX
N mðtn þ sx; qÞdom ¼ 0;I

oX

Z
R3
qlqmf ðt; x; qÞ d

3q
jqj


 �
dom ¼

I
oX
T lmðtn þ sx; qÞdom ¼ 0:

ð4:16Þ
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Next we define

wðt; x; qÞ ¼ �ðfn ln fnÞ x



� s

q

jqj ; q
�
; ð4:17Þ

and we conclude due to chain rule that w satisfies the weak form of the free-flight equation qmðow=oxmÞ ¼ 0,
namelyI

oX
qmwðt; x; qÞdom ¼ 0: ð4:18Þ

This is coming from the Gauss Divergence Theorem.

Integrating this equation with respect to q and interchanging the volume and surface integrals, we finally

get, using Eq. (4.2)I
oX

Z
R3
qmwðt; x; qÞ d

3q
jqj


 �
dom ¼

I
oX
Smðtn þ sx; qÞdom ¼ 0: � ð4:19Þ

Proposition 4.2. Let X � Rþ
0 	 R3 be any bounded convex region in time and space. By dom we denote the

positively oriented surface element of oX. Let sM > 0 be a fixed time step. The moment representations (4.1)

and (4.2) calculated by the iterated scheme defined above have the following properties:

(i) The conservation laws for the particle number, the momentum and energy hold, i.e.,I
oX
N m dom ¼ 0;

I
oX
T lm dom ¼ 0: ð4:20Þ

(ii) The following entropy inequality is satisfiedI
oX
Sm dom P 0: ð4:21Þ

Proof. Let be sM > 0. We first prove part (i) of the proposition. The time axis is divided by the maximi-
zation times 0 ¼ t0 < t1 < t2 <   , so that the convex domain X can be decomposed into the subdomains

X0 ¼ ðd; xÞ 2 Xj0
n

� d6
t0 þ t1
2

o
;

Xn ¼ ðd; xÞ 2 Xj tn�1 þ tn
2

n
6 d6

tn þ tnþ1
2

o
; n ¼ 1; 2; 3; . . . :

ð4:22Þ

Now we use the additivity of the curve integrals over oXn,I
oX
N m dom ¼

X
nP 0

I
oXn

N m dom;

I
oX
T lm dom ¼

X
nP 0

I
oXn

T lm dom; ð4:23Þ

in order to state that it is sufficient to prove the conservation laws and the entropy inequality for each

domain Xn, which only contains the maximization time tn.
Then for e in the range 0 < e < 1

2
sM we define a further decomposition of each Xn; nP 1, into three parts

Xe
n;L ¼ ðd; xÞ 2 Xnjdf 6 tn � eg;

Xe
n;M ¼ ðd; xÞ 2 Xnjtnf � e6 d6 tn þ eg;

Xe
n;R ¼ ðd; xÞ 2 Xnjdf P tn þ eg:

ð4:24Þ
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The decompositions which are illustrated in the following figure, were also applied in order to prove the

conservation laws and the entropy inequality for the classical Euler equations, see [11].

We obtainZ
oXn

N m dom ¼
Z
oXe

n;L

N m dom þ
Z
oXe

n;R

N m dom þ
Z
oXe

n;M

N m dom;

Z
oXn

T lm dom ¼
Z
oXe

n;L

T lm dom þ
Z
oXe

n;R

T lm dom þ
Z
oXe

n;M

T lm dom

since the first two integrals on the right-hand side are in the free flight zone, so we conclude from Eq. (4.16)

that these integrals vanish, i.e.,Z
oXe

n;L

N m dom ¼
Z
oXe

n;R

N m dom ¼ 0;
Z
oXe

n;L

T lm dom ¼
Z
oXe

n;R

T lm dom ¼ 0:

This implies, using X�
n ¼ fx 2 R3jðtn; xÞ 2 XgZ

oXn

N m dom ¼
Z
oXe

n;M

N m dom ¼ lim
e!0

Z
oXe

n;M

N m dom ¼
Z

X�
n

Z
q0 fnðx; qÞ
�#

� fn�1 x



� sM

q

jqj

�
d3q
jqj

$
d3x

and Z
oXn

T lm dom ¼
Z
oXe

n;M

T lm dom ¼ lim
e!0

Z
oXe

n;M

T lm dom

¼
Z

X�
n

Z
q0ql fnðx; qÞ

�#
� fn�1 x



� sM

q

jqj

�
d3q
jqj

$
d3x;

where tn�1 is the maximization time that preceedes the maximization time tn. The phase density fn has to be
taken to be the ultra-relativistic J€uuttner phase density (2.33).
The last integral expression in these equations vanishes due to the continuity conditions (4.5) across the

maximization time tn, which yieldsZ
R3
q0fnðx; qÞ

d3q
jqj ¼

Z
R3
q0fn�1 x



� sM

q

jqj ; q
�
d3q
jqj ;Z

R3
q0qlfnðx; qÞ

d3q
jqj ¼

Z
R3
q0qlfn�1 x



� sM

q

jqj ; q
�
d3q
jqj :

ð4:25Þ

This expresses the constraints that were used for the maximization procedure. We have thus established

that the weak form (4.20) for an arbitrary convex domain X is implied by the representations (4.1).
Regarding the second part (ii) which states the existence of the entropy inequality (4.21), we start the

proof again with the decompositions (4.22) and (4.24) of X. Since
R
oX S

m dom ¼
P

nP 0

R
oXn

Sm dom, it is suf-

ficient to prove
R
oXn

Sm dom P 0 for each n. We obtainI
oXn

Sm dom ¼
I
oXe

n;L

Sm dom þ
I
oXe

n;R

Sm dom þ
I
oXe

n;M

Sm dom: ð4:26Þ

Again the first two integrals lie in the free flight zone. We can see from Eq. (4.19) that these integrals

vanishes, i.e.,
H
oXe

n;R
Sm dom ¼ 0, and

H
oXe

n;L
Sm dom ¼ 0.
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For every sufficiently small e > 0 the following holds

Z
oXn

Sm dom ¼ lim
e!0

Z
oXe

n;M

Sm dom

¼
Z

X�
n

Z
q0
�#
� ðfn ln fnÞðx; qÞ þ ðfn�1 ln fn�1Þ x



� sM

q

jqj ; q
�
d3q
jqj

$
d3x; ð4:27Þ

where X�
n ¼ fx 2 R3jðtn; xÞ 2 Xg, and tn�1 < tn is the maximization time that preceeds tn. �

Next we shall show that the integral (4.27) is non-negative. To this end we need the following.

Lemma 4.3. For u; v > 0 we have

v ln v� u ln u ¼ ½ln uþ 1�ðv� uÞ þ Rðu; vÞ ð4:28Þ

with a function Rðu; vÞP 0.

Proof of the Lemma. Due to Taylor�s formula there is a n > 0 between u; v > 0 such that

v ln v ¼ u ln uþ ðln uþ 1Þðv� uÞ þ 1

2n
ðv� uÞ2: ð4:29Þ

We conclude Rðu; vÞ ¼ 1
2nðv� uÞ2 P 0. �

Continuation of proof of Proposition 4.2: Now we apply Lemma 4.3 to u ¼ fnðx; qÞ and v ¼
fn�1ðx� sMðq=jqjÞ; qÞZ

R3
q0
�
� ðfn ln fnÞðx; qÞ þ ðfn�1 ln fn�1Þ x



� sM

q

jqj ; q
�
d3q
jqj

¼ �
Z
R3
q0 1½ þ ln fnðx; qÞ� fnðx; qÞ

�
� fn�1 x



� sM

q

jqj ; q
�
d3q
jqj

þ
Z
R3
R fnðx; qÞ; fn�1 x




� sM

q

jqj ; q
��
d3q
jqj : ð4:30Þ

The second integral is non-negative and the first one vanishes due to the following reasons. Using J€uuttner�s
phase density for fnðx; qÞ we have

ln fnðx; qÞ ¼ ln
nðxÞ
8pT 3ðxÞ exp

�umqm

T ðxÞ


 �� 
¼ AðxÞ � BðxÞumqm; ð4:31Þ

where

AðxÞ ¼ ln nðxÞ
8pT 3ðxÞ and BðxÞ ¼

1

T ðxÞ :

We use the value (4.31) of ln fnðx; qÞ in (4.30). Using the definitions (4.1) for N l; T lm and the continuity

conditions (4.5) for the zero components N 0; T 0m, we can see that the first integral in (4.30) is zero.
We have thus established the entropy inequality (4.21). �
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4.1. Comparison of relativistic and classical kinetic schemes

Finally we compare the kinetic scheme for the ultra-relativistic Euler equations with the corresponding
kinetic scheme for the classical Euler equations, which was studied in detail by Deshpande and Raul [7],

Deshpande [8,9], as well as Dreyer and Kunik [11]. The basic ingredients of the kinetic schemes are the same

in both cases, as given below.

(a) There are given initial data for the mass-density, denoted by q in the classical case, the velocity v and
the pressure p, which can be chosen as the five basic variables in the Euler equations.
(b) There is a phase density fM, usually called the Maxwellian, which describes the velocity distribution

for the atoms of a gas in local equilibrium in terms of the five basic variables.

(c) There is a time step sM > 0 and a corresponding sequence of equidistant time steps tn ¼ nsM with
nP 0, also called the maximization times, see [11].

(d) At each maximization time t ¼ tn we take the Maxwellian phase density, starting initially from
the given initial data for n ¼ 0. This Maxwellian is used as an initial phase density in order to solve the
collision free kinetic phase density within the time range tn < tn þ s < tnþ1, which will be called a free-
flight interval. All thermodynamic quantities are algebraic combinations of moment integrals from this

free-flight phase density f , and therefore they are defined everywhere in the free-flight interval under
consideration.

It is very important to note here that the free-flight phase density is in general not a Maxwellian.
Therefore in the free-flight intervals of the kinetic scheme the gas is usually neither in equilibrium nor

satisfies the isotropic constitutive relations satisfied for the Euler equations!

(e) In the free-flight intervals it can be seen very easily that the conservation laws for mass, momentum,

energy and even for the entropy hold. The requirements that the kinetic schemes must satisfy the con-

servation laws and the entropy inequality across each maximization time tnþ1 turns out to be equivalent to
the five continuity conditions, which state that the ’’densities’’ written under the time-derivatives in the

conservation laws must be continuous across tnþ1.
In turn, the continuity conditions must be used in order to initialize the kinetic schemes for the next time

step tnþ1, after the free flight was performed in the time interval tn < t < tnþ1.
Thus we have given a list of the common properties of the kinetic schemes for the classical and the

relativistic Euler equations. But now there comes an interesting difference.

(A) In the classical case the densities for mass, momentum and energy are given by q, qv and 1
2
qv2 þ 3

2
p,

and hence they are algebraic functions of the primitive variables q, v, p. Here, it is crucial to note that this is
even true in the free-flight phase, where the gas is not in local equilibrium. Due to the continuity conditions

these densities and hence the five basic variables are continuous across the maximization time.

In contrast, the fluxes of momentum and energy which are moment integrals of the classical phase
densities, are in general discontinuous across tnþ1, since the gas is not isotropic in the free-flight domain
immediately left to tnþ1.
(B) In the relativistic case the densities under the time derivatives in the conservation laws are given by

N 0 and T 0l, and in the free-flight intervals they cannot be written as functions of the basic variables n,
v ¼ u=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
and p. This is a consequence of the generally valid equations n ¼

ffiffiffiffiffiffiffiffiffiffiffi
N lNl

p
, ul ¼ 1

n N
l and and

p ¼ 1
3
ðulum � glmÞT lm, which depend on all components of the tensors N l, T lm.

Immediately before the maximization time tnþ1 we have a non-isotropic tensor T lm
� in the free-flight

regime, where as at tnþ1 we have the isotropic tensor T
lm
þ which satisfies the constitutive Euler-relations (3.1)

in local equilibrium. Combining this with the argumentation above and comparing with the evaluation (4.7)

of the continuity conditions we finally conclude that the basic fields calculated from the relativistic kinetic

scheme may in general lead to jumps across the maximization times.

Finally we note that this would not be the case if we choose the zero-components N 0 and T 0l as the basic
variables of the relativistic Euler system, which is mathematically possible but not usual.
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5. A kinetic scheme for the one dimensional case

In the following we are looking for spatially one dimensional solutions, which are nevertheless solutions

to the full three dimensional equations. We only consider solutions which depend on t and x ¼ x1 and
satisfy n ¼ nðt; xÞ; u ¼ ðuðt; xÞ; 0; 0Þ; p ¼ pðt; xÞ. We will use the generally valid equation p ¼ nT and go
back to the full three dimensional scheme.

In order to calculate the surface integrals (4.11) and (4.12) we introduce instead of the unit vector w the

new variables �16 n6 1 and 05u52p by

w1 ¼ n; w2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
sinu; w3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
cosu ð5:1Þ

with the surface element dSðwÞ ¼ dndu.
Note that the quantities n; T ; u in the integrals (4.11) and (4.12) do not depend on the variable u. This

fact enables us to carry out the integration with respect to u directly. Thus the twofold surface integral
reduces to a simple n-integral. For abbreviation we introduce

Uðy; nÞ ¼ 1
2

nðyÞ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� nuðyÞÞ3

; Wðy; nÞ ¼ 3
2

ðnT ÞðyÞ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðyÞ

p
� nuðyÞÞ4

; ð5:2Þ

then the reduced integrals for the moments can be written as

N 0ðtn þ s; xÞ ¼
Z 1

�1
Uðx� sn; nÞdn; N 1ðtn þ s; xÞ ¼

Z 1

�1
nUðx� sn; nÞdn; ð5:3Þ

T 00ðtn þ s; xÞ ¼
Z 1

�1
Wðx� sn; nÞdn;

T 01ðtn þ s; xÞ ¼
Z 1

�1
nWðx� snÞdn; ð5:4Þ

T 11ðtn þ s; xÞ ¼
Z 1

�1
n2Wðx� snÞdn:

Again the integrals reflect the fact that in the ultra-relativistic case the particles are moving on the surface of

the light cone, see (4.11) and (4.12). Moreover we obtain

N 2ðtn þ s; xÞ ¼ N 3ðtn þ s; xÞ ¼ 0;

T 10ðtn þ s; xÞ ¼ T 01ðtn þ s; xÞ;

T 22ðtn þ s; xÞ ¼ T 33ðtn þ s; xÞ ¼ 1
2
½T 00ðtn þ s; xÞ � T 11ðtn þ s; xÞ�;

where all the other components of T lm are zero. So in the one dimensional case n; u and T can be found
from the generally valid relations given in (4.4) as follows

nðtn þ s; xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN 0ðtn þ s; xÞÞ2 � ðN 1ðtn þ s; xÞÞ2

q
; ð5:5Þ

uðtn þ s; xÞ ¼ 1
n
N 1ðtn þ s; xÞ; ð5:6Þ

pðtn þ s; xÞ ¼ 1
3
½f1þ u2ðtn þ s; xÞgT 00ðtn þ s; xÞ � 2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðtn þ s; xÞ

p
 T 01ðtn þ s; xÞ

þ u2ðtn þ s; xÞT 11ðtn þ s; xÞ�: ð5:7Þ
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We can now simplify the Eq. (4.7), which are used in order to initialize the general three-dimensional

scheme, and obtain for the one-dimensional case

pðtþn ;xÞ ¼
1

3

�
� T 00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðT 00Þ2 � 3ðT 01Þ2

q 
; ð5:8Þ

uðtþn ; xÞ ¼
T 01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pðtþn ; xÞ½pðtþn ; xÞ þ T 00�
p ; ð5:9Þ

nðtþn ; xÞ ¼
N 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ uðtþn ; xÞ
2

q : ð5:10Þ

Here, again N 0 ¼ N 0ðt�n ; xÞ, T 00 ¼ T 00ðt�n ; xÞ and T 01 ¼ T 01ðt�n ; xÞ are given by the free-flight moments.

6. From the kinetic scheme to the Eulerian limit (sMfi0)

In the previous sections we have shown how to calculate the solution of the kinetic scheme in the three-
and one-dimensional case, respectively. This was done for the prescribed initial data of n; u and p for a
given free-flight time step sM > 0. If we calculate these solutions for sM ! 0 then we get the Eulerian limit

Nl ! nul; T lm ! �pglm þ 4pulum; Sl ! nul ln
n4

p3
: ð6:1Þ

First we pass to the Eulerian limit (6.1) at the points of smoothness in the following way using (2.15) with

Qðf Þ ¼ 0

lim
s!0

o

os
N 0ðtn þ s; xÞ ¼ lim

s!0

o

os
ðnðtn þ s; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðtn þ s;xÞ

p
Þ ¼ lim

s!0

o

os

Z
R3
jqjfn x



� s

q

jqj ; q
�
d3q
jqj

¼ � lim
s!0

Z
R3
jqj
X3
k¼1

qk

jqj
o

oxk
fn x



� s

q

jqj ; q
�
d3q
jqj ¼ �

Z
R3

X3
k¼1

qk
o

oxk
fnðx; qÞ

d3q
jqj

¼ �
X3
k¼1

o

oxk
ðukðtþn ; xÞnðtþn ; xÞÞ ¼ �r  ðuðtþn ; xÞnðtþn ; xÞÞ:

This implies

o

ot
ðnðtþn ; xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2ðtþn ; xÞ

q
Þ þ r  ðuðtþn ; xÞnðtþn ; xÞÞ ¼ 0; ð6:2Þ

which is the first Euler equation (3.4). Similarly we get the other two Euler equations (2.5) and (2.6) if we

differentiate T 00ðtn þ s; xÞ and T 0kðtn þ s; xÞ with respect to s and pass to the limit s ! 0.

Secondly, on the left-hand sides of (6.1) there are the moments N l; T lm and Sl as calculated by the

kinetic scheme see (4.1) and (4.2). Since we have already established the conservation laws and the entropy

inequality for the solution of the kinetic scheme in Proposition 4.2, we conclude from (6.1) that this also

results for the weak entropy solution in the Eulerian limit sM ! 0. The weak entropy solution in the

Eulerian limit in one space dimension is given by (3.9), (3.10) and (3.11).

7. Numerical implementation of the scheme

In this section we explain the numerical implementation of the one-dimensional kinetic scheme. The

procedure is similar for the two-dimensional case (see Fig. 1).
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• We start with the values of initial data nðx; 0Þ, uðx; 0Þ and T ðx; 0Þ at equidistant grid points.
• We specify the length L of the spatial domain, the number Nx of elements (intervals) in the spatial domain

06 x6 L, the final time tf of output, the number Em of maximization times and the number Ff of free
flights. For i ¼ 0; . . . ;Nx we introduce the nodes xi ¼ i  ðL=NxÞ.

• The time step Dt is calculated by Dt ¼ tf=EmFf . Here, we have two time loops, one is an outer loop for the
maximization times and the other one is an inner loop for the free flight phase. The step in the spatial

domain is Dx ¼ L=Nx.

• Our aim is to calculate the moments (5.3) and (5.4). These moments are then used to update the fields n,
u and T .

• Since we only know the values of the fields at the nodal points, the free flight fields in the integrands of

(5.3) and (5.4) must be calculated from the knowledge of the nodal values at the points xi. Here, we use
linear interpolation between two subsequent nodal points xi and xiþ1. We use the following interpolation
formula

fnðxj � ns; nÞ ¼ ð1� gÞfJðxi; nÞ þ gfJðxiþ1; nÞ;

where xj � ns ¼ xi þ gðxiþ1 � xiÞ for 06 g6 1. Here, fn and fJ are free-flight and J€uuttner phase densities,
respectively. The relation between xi, xj and g is shown in Fig. 2.

Fig. 1. The decompositions of X and Xn.

Fig. 2. Interpolation of y ¼ xj � ns at the grid points xi and xiþ1.
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• The n-integration is performed with the composite trapezoidal rule.
• When we are in the free flight the values of the fields n, u and T are calculated by using the generally valid
algebraic relations (5.5), while at the maximization time, i.e., after the end of free flight loop, the fields

are updated by using the continuity relations (5.8) in order to initialize the scheme for next time step.
In the following we present numerical test cases for the solution of the one-dimensional ultra-relativistic

Euler equations. For this purpose a computer program was developed using the same procedure discussed

above.

7.1. Single shock solution of the Euler equations

In this example we test our kinetic scheme for a single shock problem. We supplied initial data to the

program for which we know that a single shock solution results from the Rankine–Hugoniot jump con-

ditions. We select the initial data and the space–time range such that the shock exactly reaches the right

lower corner at the time axis. In Fig. 3 the left-hand figure represents the plot of the particle density n in the
time range 06 t6 1:271 and in the space range 06 x6 L ¼ 2. We 1000 mesh points in the spatial domain
and time step sM ¼ 0:01271. The figure shows that the kinetic scheme captures this shock in exactly the
same way as predicted by the Rankine–Hugoniot jump conditions. The right-hand plot in Fig. 3 represents
the particle density n at the fixed time t ¼ 0:635 for the same initial data. The Riemannian initial data with a
jump at x ¼ L=2 ¼ 1 are chosen as

ðn; u; pÞ ¼ ð1:0; 0:0; 1:0Þ if x < 1:0;
ð2:725;�0:6495; 4:0Þ if xP 1:0:

#

In this example we found that our kinetic scheme gives a sharp shock resolution. This is a good test for the

kinetic scheme, and its success indicates that the conservation laws for mass, momentum and energy as well

as the entropy inequality are satisfied. We have already proved these properties for the solutions of the

kinetic scheme.

7.2. Riemann solutions of the Euler equations

Here, we test our kinetic scheme for the solution of one dimensional Riemann problems. For the

comparison we use exact Riemann solution, first order upwind and Lax–Friedrichs central schemes. It was

Fig. 3. Left: particle density nðt; xÞ in the time range 06 t6 1:271. Right: particle density at t ¼ 0:635.
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found that kinetic scheme has comparable accuracy with the first order upwind and Lax–Friedrichs

schemes.

Test Problem 1: The initial data are

ðn; u; pÞ ¼ ð5:0; 0:0; 10:0Þ if x < 0:5;
ð1:0; 0:0; 0:5Þ if xP 0:5:

#

The spatial domain is taken as ½0; 1� with 400 mesh elements and the final time is t ¼ 0:5. The solution
consists of a left shock, a contact and a right rarefaction wave. Fig. 4 represents plots for the particle

density n and pressure p. We can see that the schemes does not resolve the contact discontinuity very well.
Test Problem 2: The initial data are

ðn; u; pÞ ¼ ð1:0; 1:0; 3:0Þ if x < 0:5;
ð1:0;�0:5; 2:0Þ if xP 0:5:

#

The spatial domain is taken as [0,1] with 400 mesh elements and the final time is t ¼ 0:5. The solution
consist of left shock, a contact and a right shock. Fig. 5 represents a plots for the particle density n and
pressure p at t ¼ 0:5.

Fig. 4. Comparison of the results from the test problem 1 at time t ¼ 0:5.

Fig. 5. Comparison of the results from the test problem 2 at time t ¼ 0:5.
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Test Problem 3: The initial dare are

ðn; u; pÞ ¼ ð1:0;�0:5; 2:0Þ if x < 0:5;
ð1:0; 0:5; 2:0Þ if xP 0:5:

#

This problem has a solution consisting of two strong rarefactions and a trivial stationary contact dis-

continuity. The spatial domain is taken as [0,1] with 400 mesh elements and the final time is t ¼ 0:5. Fig. 6
show the solution profiles.
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